一、常用诱导公式
公式一:
设&alpha为任意角,终边相同的角的同一三角函数的值相等:
sin(2k&pi+&alpha)=sin&alpha(k&isinZ)
cos(2k&pi+&alpha)=cos&alpha(k&isinZ)
tan(2k&pi+&alpha)=tan&alpha(k&isinZ)
cot(2k&pi+&alpha)=cot&alpha(k&isinZ)
公式二:
设&alpha为任意角,&pi+&alpha的三角函数值与&alpha的三角函数值之间的关系:
sin(&pi+&alpha)=-sin&alpha
cos(&pi+&alpha)=-cos&alpha
tan(&pi+&alpha)=tan&alpha
cot(&pi+&alpha)=cot&alpha
公式三:
任意角&alpha与-&alpha的三角函数值之间的关系:
sin(-&alpha)=-sin&alpha
cos(-&alpha)=cos&alpha
tan(-&alpha)=-tan&alpha
cot(-&alpha)=-cot&alpha
公式四:
利用公式二和公式三可以得到&pi-&alpha与&alpha的三角函数值之间的关系:
sin(&pi-&alpha)=sin&alpha
cos(&pi-&alpha)=-cos&alpha
tan(&pi-&alpha)=-tan&alpha
cot(&pi-&alpha)=-cot&alpha
公式五:
利用公式一和公式三可以得到2&pi-&alpha与&alpha的三角函数值之间的关系:
sin(2&pi-&alpha)=-sin&alpha
cos(2&pi-&alpha)=cos&alpha
tan(2&pi-&alpha)=-tan&alpha
cot(2&pi-&alpha)=-cot&alpha
公式六:
&pi/2±&alpha及3&pi/2±&alpha与&alpha的三角函数值之间的关系:
sin(&pi/2+&alpha)=cos&alpha
cos(&pi/2+&alpha)=-sin&alpha
tan(&pi/2+&alpha)=-cot&alpha
cot(&pi/2+&alpha)=-tan&alpha
sin(&pi/2-&alpha)=cos&alpha
cos(&pi/2-&alpha)=sin&alpha
tan(&pi/2-&alpha)=cot&alpha
cot(&pi/2-&alpha)=tan&alpha
sin(3&pi/2+&alpha)=-cos&alpha
cos(3&pi/2+&alpha)=sin&alpha
tan(3&pi/2+&alpha)=-cot&alpha
cot(3&pi/2+&alpha)=-tan&alpha
sin(3&pi/2-&alpha)=-cos&alpha
cos(3&pi/2-&alpha)=-sin&alpha
tan(3&pi/2-&alpha)=cot&alpha
cot(3&pi/2-&alpha)=tan&alpha
(以上k&isinZ)